

Liveness: A Score Mapping Methodology for Usability and Thresholding

Terry Riopka, Senior Director of Research Jens Peter Hube, Chief Scientist

Motivation

- Most biometric algorithms return similarity or classification scores
- Decision boundary problems require setting of operational thresholds
 - critical to determining balance between false rejections and false acceptances
- Proposal: apply concept of FMR-based score mapping (first proposed by Griffin, Hube, and Mahlmeister for use with the BioAPI standard in 2004) to liveness
 - enables setting a direct (meaningful) correspondence between thresholds and expected operational error
- Lack of theoretical justification, but empirically useful

Overview

Motivation

Performance Metrics in Matching – FMR

Introduction to FMR-based Score Mapping for Matching

BPCER-based Score Mapping for Liveness

Science Forward: The Intuition Behind BPCER-based Score Mapping

False Non-Match Rate (FNMR)

False Match Rate (FMR)

AWARE

use FMR instead of threshold!

Mapping Thresholds to FMR

 Plot score threshold vs. FMR for various representative datasets

Mapping Thresholds to FMR

- Plot score threshold vs. FMR for various representative datasets
- Remove outliers and fit a curve
 - enables mapping of algorithm score into an FMR-based score
 - allows setting of thresholds according to desired FMR

Mapping Thresholds to FMR

- Plot score threshold vs. FMR for various representative datasets
- Remove outliers and fit a curve
 - enables mapping of algorithm score into an FMR-based score
 - allows setting of thresholds according to desired FMR
- Simplify further by mapping to -log(FMR) instead!

Mapping Thresholds to -log(FMR)

- Plot score threshold vs. FMR for various representative datasets
- Remove outliers and fit a curve
 - enables mapping of algorithm score into an FMR-based score
 - allows setting of thresholds according to desired FMR
- Simplify further by mapping to -log(FMR) instead!

Final Mapped Thresholds to -log(FMR)

- Plot score threshold vs. FMR for various representative datasets
- Remove outliers and fit a curve
 - enables mapping of algorithm score into an FMR-based score
 - allows setting of thresholds according to desired FMR
- Simplify further by mapping to —log(FMR) instead!
- Monotonic mapping preserves ordering and does not affect DET

FMR – Based Thresholding

$$FMR = 10^{-T}$$

Example 1:

Set threshold to: 3 -

Expected System FMR = 10^{-3} (1/1000)

- intuitive relationship between operational threshold and an error rate relevant to the user
- enables consistent operational thresholds for FMR as accuracy and algorithms continue to improve

Example 2:

Set threshold to: 4 —

Expected System FMR =
$$10^{-4}$$
 (1/10000)

Example 3:

Set threshold to: 6 -

Expected System FMR = 10^{-6} (1/1000000)

-log(BPCER) Score Mapping

Relationship between -log(BPCER) and RAW Score Threshold (for representative datasets)

- only live data used for mapping
- analogous to the use of imposter data for matching

Relationship between -log(BPCER) and MAPPED Score Threshold (for representative datasets)

BPCER - Based Thresholding

$$BPCER = 10^{-T}$$

Example 1:

Set threshold to: 1.0

Expected System **BPCER** = 10⁻¹ (1/10 expected live errors)

 intuitive relationship between operational threshold and an error rate relevant to the user

 enables consistent operational thresholds for BPCER as accuracy and algorithms continue to improve

Example 2:

Set threshold to : 2.0

Expected System **BPCER** = 10^{-2} (1/100 expected live errors)

Example 3:

Set threshold to: 3.0 -

Expected System BPCER = 10^{-3} (1/1000 expected live errors)

Science Forward: The Intuition Behind BPCER-based Score Mapping

- Modeling of live data seems to be more stable than modeling spoof data
 - Feature sets required to detect diversity of spoof species are likely more diverse than those required for live data more challenging for models to learn score consistency?
 - > Spoofs are open-ended with a constant evolution of attack vectors
- Abundancy of live data given expected normal operation enables more accurate modeling of score distributions with respect to BPCER
- Security is important, but usability seems to be a consistent concern operationally, so accurate assessment of its potential impact on the entire system is vital
- Why not APCER-based score mapping?
 - Given observed differences in spoof species detection error rates, APCER mapping would be sensitive to balance of spoof species in training vs. operational scenarios
 - Same security settings for different spoofs would incur the most usability error for the least accurate algorithm, possibly one that might be least prevalent

Thank you!

Terry Riopka triopka@aware.com