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Motivation

Most biometric algorithms return similarity or classification scores

e Decision boundary problems — require setting of operational thresholds
» critical to determining balance between false rejections
and false acceptances
* Proposal: apply concept of FMR-based score mapping (first proposed by Griffin,
Hube, and Mahlmeister for use with the BioAPI standard in 2004) to liveness
» enables setting a direct (meaningful) correspondence between
thresholds and expected operational error

* Lack of theoretical justification, but empirically useful
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Overview

Motivation

Performance Metrics in Matching — FMR
Introduction to FMR-based Score Mapping for Matching

BPCER-based Score Mapping for Liveness

Science Forward: The Intuition Behind BPCER-based Score Mapping
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Introduction to Biometric Performance Metrics
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Introduction to Biometric Performance Metrics
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Introduction to Biometric Performance Metrics
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Terminology: FNMR vs. FMR
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Terminology: FNMR vs. FMR
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Terminology: FNMR vs. FMR

Match Scores
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Terminology: FNMR vs. FMR

Match Scores
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Terminology: FNMR vs. FMR
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Terminology: FNMR vs. FMR
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relationship between matching algorithm
thresholds and FMR is very stable

function between FMR and threshold can be
empirically determined

use FMR instead of threshold!
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False Match Rate

Mapping Thresholds to FMR

Relationship between FMR and RAW Score Threshold
(for representative datasets)
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Plot score threshold vs. FMR for
various representative datasets
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False Match Rate

Mapping Thresholds to FMR

Relationship between FMR and RAW Score Threshold

(for representative datasets)
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* Plot score threshold vs. FMR for
various representative datasets

e Remove outliers and fit a curve

enables mapping of algorithm
score into an FMR-based score
allows setting of thresholds
according to desired FMR
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Mapping Thresholds to FMR

Relationship between FMR and RAW Score Threshold
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-log(False Match Rate)

Mapping Thresholds to —log(FMR)

Relationship between —log(FMR) and RAW Score Threshold

(for representative datasets)
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1.0

Plot score threshold vs. FMR for
various representative datasets

Remove outliers and fit a curve
* enables mapping of algorithm
score into an FMR-based score
* allows setting of thresholds
according to desired FMR

Simplify further by mapping to
—log(FMR) instead!
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-log(False Match Rate)

Final Mapped Thresholds to —log(FMR)

Relationship between —log(FMR) and MAPPED Score Threshold
(for representative datasets)
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FMR - Based Thresholding - o _
* intuitive relationship between operational threshold

FMR =10T and an error rate relevant to the user

* enables consistent operational thresholds for FMR

Example 1: _ _ .
as accuracy and algorithms continue to improve

Set threshold to : 3
Expected System FMR

103 (1/1000)

Example 2:
Set threshold to : 4
Expected System FMR

104 (1/10000)

Example 3:
Set threshold to : 6
Expected System FMR

10® (1/1000000)
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-log(BPCER) Score Mapping

Relationship between —log(BPCER) and RAW Score Threshold
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BPCER - Based Thresholding o o _
* intuitive relationship between operational threshold

BPCER = 10-T and an error rate relevant to the user

* enables consistent operational thresholds for BPCER

Example 1: _ _ .
as accuracy and algorithms continue to improve

Set threshold to : 1.0
Expected System BPCER = 10! (1/10 expected live errors)

Example 2:
Set threshold to : 2.0
Expected System BPCER = 102 (1/100 expected live errors)

Example 3:
Set threshold to : 3.0
Expected System BPCER = 103 (1/1000 expected live errors)
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Science Forward: The Intuition Behind BPCER-based Score Mapping

Modeling of live data seems to be more stable than modeling spoof data

» Feature sets required to detect diversity of spoof species are likely more diverse than those
required for live data — more challenging for models to learn score consistency?

» Spoofs are open-ended with a constant evolution of attack vectors

* Abundancy of live data given expected normal operation enables more accurate modeling of
score distributions with respect to BPCER

* Security is important, but usability seems to be a consistent concern operationally, so accurate
assessment of its potential impact on the entire system is vital

*  Why not APCER-based score mapping?

» Given observed differences in spoof species detection error rates, APCER mapping would be
sensitive to balance of spoof species in training vs. operational scenarios

» Same security settings for different spoofs would incur the most usability error for the least
accurate algorithm, possibly one that might be least prevalent
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Terry Riopka

Thank you!

triopka@aware.com




	Slide 1: Liveness: A Score Mapping Methodology for Usability and Thresholding
	Slide 2: Motivation
	Slide 3: Overview
	Slide 4: Introduction to Biometric Performance Metrics
	Slide 5: Introduction to Biometric Performance Metrics
	Slide 6: Introduction to Biometric Performance Metrics
	Slide 7: Introduction to Biometric Performance Metrics
	Slide 8: Introduction to Biometric Performance Metrics
	Slide 9: Terminology: FNMR vs. FMR
	Slide 10: Terminology: FNMR vs. FMR
	Slide 11: Terminology: FNMR vs. FMR
	Slide 12: Terminology: FNMR vs. FMR
	Slide 13: Terminology: FNMR vs. FMR
	Slide 14: Terminology: FNMR vs. FMR
	Slide 15: Mapping Thresholds to FMR
	Slide 16: Mapping Thresholds to FMR
	Slide 17: Mapping Thresholds to FMR
	Slide 18: Mapping Thresholds to –log(FMR)
	Slide 19: Final Mapped Thresholds to –log(FMR)
	Slide 20: FMR – Based Thresholding
	Slide 21: -log(BPCER) Score Mapping
	Slide 22: FMR – Based Thresholding
	Slide 23: Science Forward: The Intuition Behind BPCER-based Score Mapping
	Slide 24: Thank you!

