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Motivation
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• Most biometric algorithms return similarity or classification scores

• Decision boundary problems – require setting of operational thresholds

➢ critical to determining balance between false rejections 
and false acceptances

• Lack of theoretical justification, but empirically useful 

• Proposal: apply concept of FMR-based score mapping (first proposed by Griffin, 
Hube, and Mahlmeister for use with the BioAPI standard in 2004) to liveness

➢ enables setting a direct (meaningful) correspondence between 
thresholds and expected operational error
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Overview
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Motivation

Introduction to FMR-based Score Mapping for Matching

BPCER-based Score Mapping for Liveness

Performance Metrics in Matching – FMR

Science Forward: The Intuition Behind BPCER-based Score Mapping



Aware, Inc. | Restricted | 2025

Introduction to Biometric Performance Metrics
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Introduction to Biometric Performance Metrics

ETC.
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Terminology: FNMR vs. FMR
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• function between FMR and threshold can be 
empirically determined

• use FMR instead of threshold!

• relationship between matching algorithm 
thresholds and FMR is very stable
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Mapping Thresholds to FMR
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• Plot score threshold vs. FMR for 
various representative datasets
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• Plot score threshold vs. FMR for 
various representative datasets

• Remove outliers and fit a curve
• enables mapping of algorithm 

score into an FMR-based score
• allows setting of thresholds 

according to desired FMR
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Mapping Thresholds to FMR
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• Plot score threshold vs. FMR for 
various representative datasets

• Remove outliers and fit a curve
• enables mapping of algorithm 

score into an FMR-based score
• allows setting of thresholds 

according to desired FMR
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12

10

8

6

4

2

0

14

• Simplify further by mapping to 
–log(FMR) instead!
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Mapping Thresholds to –log(FMR)
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• Plot score threshold vs. FMR for 
various representative datasets

• Remove outliers and fit a curve
• enables mapping of algorithm 

score into an FMR-based score
• allows setting of thresholds 

according to desired FMR
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Relationship between –log(FMR) and RAW Score Threshold
(for representative datasets)

• Simplify further by mapping to 
–log(FMR) instead!
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Final Mapped Thresholds to –log(FMR)
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• Plot score threshold vs. FMR for 
various representative datasets

• Remove outliers and fit a curve
• enables mapping of algorithm 

score into an FMR-based score
• allows setting of thresholds 

according to desired FMR
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• Simplify further by mapping to 
–log(FMR) instead!
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ordering and does not affect DET

Direct inverse proportional relationship  
between threshold and error rate
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Expected System       FMR  =   10-6     (1/1000000) 

Expected System       FMR  =   10-4     (1/10000) 

FMR – Based Thresholding
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FMR = 10-T

Example 1: 

Set threshold to : 3

Expected System       FMR  =   10-3     (1/1000) 

Example 2: 

Set threshold to : 4

Example 3: 

Set threshold to : 6

• enables consistent operational thresholds for   FMR   
as accuracy and algorithms continue to improve

• intuitive relationship between operational threshold 
and an error rate relevant to the user
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-log(BPCER) Score Mapping
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• only live data used 
for mapping

• analogous to the 
use of imposter 
data for matching

Relationship between –log(BPCER) and RAW Score Threshold
(for representative datasets)

Mapped Threshold
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Expected System       FMR  =   10-6     (1/million) 

Expected System       FMR  =   10-4     (1/10000) 

FMR – Based Thresholding
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FMR = 10-T

Example 1: 

Set threshold to : 1.0

Expected System       FMR  =   10-3     (1/1000) 

Example 2: 

Set threshold to : 2.0

Example 3: 

Set threshold to : 3.0

• enables consistent operational thresholds for   FMR   
as accuracy and algorithms continue to improve

= 10-1   (1/10 expected live errors) 

= 10-2   (1/100 expected live errors) 

= 10-3   (1/1000 expected live errors) 

BPCER

BPCER

BPCER

BPCER

BPCER

BPCER

• intuitive relationship between operational threshold 
and an error rate relevant to the user
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Science Forward: The Intuition Behind BPCER-based Score Mapping
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• Modeling of live data seems to be more stable than modeling spoof data

➢ Feature sets required to detect diversity of spoof species are likely more diverse than those 
required for live data – more challenging for models to learn score consistency?

• Abundancy of live data given expected normal operation enables more accurate modeling of 
score distributions with respect to BPCER 

• Why not APCER-based score mapping?

➢ Given observed differences in spoof species detection error rates, APCER mapping would be 
sensitive to balance of spoof species in training vs. operational scenarios

➢ Same security settings for different spoofs would incur the most usability error for the least 
accurate algorithm, possibly one that might be least prevalent

• Security is important, but usability seems to be a consistent concern operationally, so accurate 
assessment of its potential impact on the entire system is vital

➢ Spoofs are open-ended with a constant evolution of attack vectors



Thank you!
triopka@aware.com

Terry Riopka
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